Quadratische Funktionen

Funktionen mit Gleichungen der Form $y = ax^2 + bx + c$ (allgemeine Form) bzw. $y = a (x - x_S)^2 + y_S$ (Scheitelform) mit den Formvariablen $a \neq 0$, b und $c \in \mathbb{R}$ bzw. a, x_S und $y_S \in \mathbb{R}$ heißen <u>quadratische</u> <u>Funktionen</u>. Ihre Graphen sind <u>Parabeln</u>, speziell für $a = \pm 1$: Normalparabeln. Der höchste bzw. tiefste Punkt des Graphen heißt <u>Scheitel(punkt)</u> S. Der Graph ist jeweils achsensymmetrisch zur senkrechten Geraden durch S; die beiden Teile der Parabel links und rechts dieser Symmetrieachse heißen Parabeläste.

Die Formvariablen haben folgende Bedeutung:

a: beschreibt Richtung und Form der Parabel ("Formfaktor", "Öffnungsfaktor", "Streckfaktor")

a > 0: nach oben geöffnet

|a| > 1: gestreckt (schmaler als Normalparabel)

a < 0: nach unten geöffnet

|a| < 1: gestaucht (breiter als Normalparabel)

$$a = \frac{\Delta y}{(\Delta x)^2} = \frac{y_P - y_S}{(x_P - x_S)^2}$$
 (vom Scheitel aus gehen!)

(b: Steigung der Parabel im Schnittpunkt mit der y-Achse)

c: y-Achsenabschnitt

x_S: Abszisse von S

ys: Ordinate von S

Berechnung von S aus der allgemeinen Form:

allgemein	Beispiel: $f(x) = 2x^2 - 6x + 5$
$x_S = -\frac{b}{2a}$	$x_S = -\frac{-6}{2.2} = 1,5$
$y_S = f(x_S)$	$y_S = 2 \cdot 1,5^2 - 6 \cdot 1,5 + 5 = 0,5 \implies S(1,5 0,5)$

Gleichungen lösen: (z. B. für das Berechnen von Nullstellen und Schnittstellen)

1) für b = 0 ("reinquadratisch"):

allgemein	Beispiel
x ² isolieren	$2x^2 - 18 = 0 \mid +18$
	$2x^2 = 18 \mid :2$
	$x^2 = 9$
$\pm\sqrt{\text{ziehen}}$	$x_{1,2} = \pm \sqrt{9} = \pm 3$ (d. h. $x_1 = 3$, aber $x_2 = -3$)

2) für c = 0 (,,defektquadratisch"):

allgemein	Beispiel
a x ausklammern	$3x^2 + 6x = 0 \implies 3x(x+2) = 0$
Lösungen ablesen (immer: $x_1 = 0!$)	$x_1 = 0; x_2 = -2$

Satz vom Nullprodukt (SvP):

Ein Produkt ist genau dann gleich Null, wenn einer der Faktoren gleich Null ist.

3) mit 1. oder 2. binomischer Formel:

allgemein	Beispiel
	$-2x^2 + 12x - 18 = 0$
	$-2(x^2 - 6x + 9) = 0$
	$-2(x-3)^2=0$
Lösung ablesen (immer: $x_1 = x_2!$)	$x_{1,2} = 3$ (d. h. $x_1 = 3$ und $x_2 = 3$)

4) Lösungsformel / a-b-c-Formel / Mitternachtsformel:

allgemein	Beispiel: $2x^2 - 6x + 4 = 0$
$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 2 \cdot 4}}{2 \cdot 2} = \frac{6 \pm 2}{4}$ $\Rightarrow x_1 = 1; x_2 = 2$
alternativ: p-q-Formel; dafür aber vorher erst mal durch a teilen!	
$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$	$x_{1,2} = -\frac{-3}{2} \pm \sqrt{\left(\frac{-3}{2}\right)^2 - 2} = \frac{3}{2} \pm \frac{1}{2}$
	$\rightarrow x_1 = 1; x_2 = 2$

Anzahl der Lösungen: Diskriminante D = $b^2 - 4ac$; alternativ: D = $\left(\frac{p}{2}\right)^2 - q$

D < 0: keine Lösung

D = 0: eine (doppelte) Lösung

D > 0: zwei (einfache) Lösungen

5) in Scheitelform:

allgemein	Beispiel
Klammer isolieren	$2(x+1)^2-18=0$ +18
	$2(x+1)^2 = 18 \mid :2$
	$(x+1)^2=9$
$\pm \sqrt{\text{ziehen, dann x isolieren}}$	$x + 1 = \pm 3 \mid -1$
	$x_{1,2} = \pm 3 - 1 \Rightarrow x_1 = -4; x_2 = 2$

Faktorisierung / Linearfaktorform / Produktform:

Sind x_1 und x_2 die (verschiedenen) Nullstellen einer quadratischen Funktion, so kann man ihren Funktionsterm auch in der Form $f(x) = a (x - x_1) (x - x_2)$ schreiben; x_1 und x_2 heißen dann <u>einfache Nullstellen</u>. Ist x_1 die einzige Nullstelle, so kann man den Funktionsterm auch in der Form $f(x) = a (x - x_1)^2$ schreiben. x_1 heißt dann eine <u>doppelte Nullstelle</u> der Funktion.

graphisch:

