
Das Spatprodukt

Im Folgenden soll eine Formel hergeleitet werden, mit der man das Volumen eines von drei Vektoren \vec{a} , \vec{b} , \vec{c} aufgespannten Spats berechnen kann.

- 1) Ein Spat ist ein Spezialfall eines allgemeinen Körpers; welches? Wie lautet die allgemeine Formel zur Berechnung des Volumens eines solchen Körpers?
- 2) Die Grundfläche des Spats ist ein Parallelogramm, das von den Vektoren \vec{a} , \vec{b} aufgespannt wird. Also ist der Inhalt der Grundfläche:
- 3) Geben Sie an, wie man die Höhe des Spats aus dem Vektor \vec{c} und dem Winkel α berechnen kann (elementare Trigonometrie!). Beachten Sie dabei, in welchem anderen Dreieck der Winkel α auch auftaucht.
- 4) Setzen Sie die Ergebnisse aus (2) (Grundfläche) und aus (3) (Höhe) in die Volumenformel ein.
- 5) Vereinfachen Sie das Ergebnis aus (4). (*Tipp*: In der Zeichnung oben ist der Winkel zwischen den Vektoren \vec{c} und $\vec{n} = \vec{a} \times \vec{b}$ mit α bezeichnet. Was gilt also für das Skalarprodukt der Vektoren \vec{n} und \vec{c} ?)